

CSN Invites You to a Virtual Accredited Lunchtime Symposium

This program is being supported by an educational grant from Otsuka Canada Pharmaceutical Inc.

Société canadienne de néphrologie

Welcome!

- Your audio line has been automatically **MUTED** and your video camera has been turned **OFF**
- If you have any technical issues, please use the **CHAT** and you will be contacted with assistance
- If you have any questions during the virtual symposium, please click on the "Q&A" icon at the bottom of your screen and type your question
 - Please note that not all questions may be answered due to time constraints
- This program requires the use of your mobile device. Open the browser on your device and enter <u>HitOrMythSympo.ca</u> to participate in polling.

Thank You!

• Thank you Otsuka Canada for providing an unrestricted educational grant to support this symposium.

Moderator

Juliya Hemmett MD MHPE FRCPC Nephrologist and Clinical Assistant Professor, University of Calgary

Speakers

Louis-Philippe Girard MD MBT FRCPC

Medical Director of Apheresis Medical Director of the Glomerulonephritis Clinic Nephrologist and Clinical Associate Professor University of Calgary

Louise Moist MD MSc CCPE FRCPC

Professor of Medicine Epidemiology and **Biostatistics** Nephrologist, London Health Sciences Centre Deputy Chair Division of Nephrology South West LHIN Internal Medicine Lead Schulich School of Medicine & Dentistry, Western University

Disclosures – Relationships with Commercial Interests

	Juliya Hemmett MD MHPE FRCPC	Louise Moist MD MSc CCPE FRCPC	Louis-Philippe Girard MD MBT FRCPC
Financial payments or honoraria	NA	Otsuka, AstraZeneca, Janssen, Ortho, Knight Pharmaceuticals	CPD Network, Alexion, Bayer, BI-Lilly, AstraZeneca, Janssen, Merck, Otsuka, Bausch Health
Advisory boards or speakers' bureaus	NA	Otsuka, AstraZeneca, Janssen, Boehringer Ingelheim, Novartis	AstraZeneca, Otsuka
Funded grants or clinical trials	NA	EMPA kidney site	Otsuka, Chemocentryx

Learning Objectives

After this program, participants will be better able to:

- Apply the epidemiologic and outcome data of hyperkalemia and hyperphosphatemia to your local practice
- Integrate knowledge of recent clinical trials, practice patterns, and available therapies into your management of hyperkalemia and hyperphosphatemia.
 - Apply clinical efficacy and safety data on new potassium and phosphate binders to reduce the impact of hyperkalemia or hyperphosphatemia

Implement RAASi enablement strategies in patients at risk of or with chronic hyperkalemia

Participation to Earn Section 3 Credits

In order to earn Section 3 credits, you must answer the polling questions throughout the presentation by using a mobile device.

- Go to HitOrMythSympo.ca
- Enter your name and a valid email address, select "begin".
- Throughout the presentation, knowledge checks and reflective questions will be launched to your mobile device.
- Your responses will generate an individual action plan which will be emailed to you following the symposium.
- **IMPORTANT**: To claim your Section 3 credits, you must answer ALL the questions and press "submit" once finished.

Pre-Test Polling Question

Hyperkalemia is prevalent and recurrent in patients with CKD leading to serious clinical consequences

Pre-Test Polling Question

RAASi dose-titration or discontinuation has a negative impact on HR-QoL and clinical outcomes

Potassium binders can be used to rapidly and sustainably reduce serum potassium levels while enabling RAASi in patients with chronic hyperkalemia

Hyperphosphatemia in advanced CKD is associated with increased risk of morbidity and mortality

There is conclusive evidence that phosphate-binding agents are effective agents to reduce morbidity and mortality in patients with ESRD

Phosphate-binding agents have demonstrated phosphate-lowering efficacy in real-world studies, with a substantially lower pill burden compared to traditional phosphate binders

Hyperkalemia

Louise Moist MD MSc CCPE FRCPC

Hyperkalemia is prevalent and recurrent in patients with CKD leading to serious clinical consequences

Hyperkalemia is Prevalent and Recurrent in Patients with CKD

About half of patients with CKD stage 3–5 with hyperkalemia had ≥2 recurrences within 1 year^{*2}

*Hyperkalemia was defined as serum K+ ≥5.5 mmol/L. 70 individuals (0.21%) had more than 20 episodes each in 1 year. CKD, chronic kidney disease; PD, peritoneal dialysis

1. Adelborg, K. et al. PLoS One 14(6), e0218739 (2019)

2. Dunn, J. D. et al. Am J Manag Care 21, s307-315 (2015)

3. Torlén, K. et al. Clin J Am Soc Nephrol 7, 1272–1284 (2012)

In a large cohort study in the US, data from more than 120,000 dialysis patients, of whom approximately 10,000 were on PD, were analyzed:³

of patients on dialysis had hyperkalemia

As Kidney Function Declines, the Risk of Hyperkalemia Increases

The incidence and prevalence of hyperkalemia are high in patients with CKD*

Pro	60			
Patient population	Patients (n)	Rate (%)	50 - [⊗] 40 - ¥	
Pre-dialysis CKD with mean eGFR 14.4 ± 4.6	238	31.5	- 30 - 9 20 - 10 - 0 -	8.9 No CKD

This is a result of the decreased ability to excrete potassium in CKD patients, and the presence of other comorbid/predisposing conditions (e.g., diabetes, CVD)³

* Hyperkalemia was defined as serum K+ >5.5 mmol/L in the pre-dialysis CKD study and \geq 5.5 mmol/L in the VA study CKD, chronic kidney disease; CVD, cardiovascular disease; eGFR: estimated glomerular filtration rate (mL/min/1.73 m²); VA, Veterans Affairs

1. Sarafidis PA, et al. Clin J Am Soc Nephrol. 2012;7(8):1234-1241.

3. Kovesdy, C. P. Nature Reviews Nephrology 10, 653–662 (2014)

17 2. Einhorn LM, et al. Arch Intern Med. 2009;169(12):1156-1162.

Hypo and Hyperkalemia are Associated with Increased **Mortality in at Risk Patients**

MHD: maintenance hemodialysis; MICS: malnutrition inflammation complex syndrome

1. Kovesdy, C. P. et al. CJASN 2, 999–1007 (2007)

18 2. Einhorn LM, et al. Arch Intern Med. 2009;169:1156–62.

Hyperkalemia is Associated with Other Serious Clinical **Consequences and Results in Preventable ED Visits in** CKD

- Ventricular arrhythmias
- Muscle weakness/paralysis
- ED visits and hospitalizations

CKD category (eGFR, ml/min/1.73m ²)	Rate per 1000 p-y (95%CI)
3A (45-59)	3.6 (3.3-3.9)
3B (30-44)	8.2 (7.5-8.9)
4 (15-29)	16.3 (14.4 -18.4)
5-ND(< 15)	22.9 (16.7-29.1)
5-D(< 15)	22.4 (17.2 – 27.5)

*ACSCs are health conditions for which good outpatient care can likely prevent the need for hospitalization and are recognized internationally as a measure of adequacy of ambulatory and primary health care performance

ACSC: ambulatory care sensitive conditions; CKD: chronic kidney disease; ED: emergency department; eGFR: estimated glomerular filtration rate; ND: not defined; p-y: person years

- 1. Dunn, J. D. et al. Am J Manag Care 21, s307-315 (2015)
- 2. Ronksley PE, Tonelli M, Manns BJ, Weaver RG, Thomas CM, MacRae JM, Ravani P, Quinn RR, James MT, Lewanczuk R, Hemmelgarn BR. Clin J Am Soc Nephrol. 2017 Feb 7;12(2):304-314

ED visits for overall CKD-related ACSCs* per 1000 p-y (hyperkalemia individually by CKD category)² Mean follow-up: 2.4 years, n = 111,087

Post-Test Polling Question

Hyperkalemia is prevalent and recurrent in patients with CKD leading to serious clinical consequences

Post-Test Polling Question

Hyperkalemia is prevalent and recurrent in patients with CKD leading to serious clinical consequences

RAASi dose-titration or discontinuation has a negative impact on HR-QoL and clinical outcomes

Rate of Hyperkalemia is High in RAASi-treated Patients

Study (year main results published)	Population	# of Patients	Definition of hyperkalemia (mmol/L)	Mean eGFR (mL/min/1.73m ²)	Rate
RENAAL ¹ (2001)	Diabetic nephropathy	751	≥ 5.0 ≥ 5.5	40.9 37.0	38.4% 10.8%
IDNT ² (2001)	Diabetic nephropathy	579	> 6.0	_	18.6%
J-LIGHT ³ (2004)	HTN-CKD	58	> 5.1 ≤ 6.9	_	5.2%
AASK ⁴ (2009)	Non-diabetic CKD	417	≥ 5.5	46.6	7.2%

CKD, chronic kidney disease; eGFR: estimated glomerular filtration rate; HTN, hypertension; IDNT, Irbesartan Diabetic Nephropathy Trial; J-LIGHT, Japanese Losartan Therapy Intended for the Global Renal Protection in Hypertensive Patients; RENAAL, Reduction of Endpoints in Noninsulin-Dependent Diabetes Mellitus with the Angiotensin II Antagonist Losartan.

1. Miao, Y. et al. Diabetologia 54, 44–50 (2011)

2. AVAPRO® Canadian Product Monograph. Sanofi-Aventis Canada Inc. Date of

23 revision: June 18, 2018.

3. Lino Y, et al. Hypertens Res. 27(1), 21-30 (2004)

4. Weinberg, J. M. et al. Arch Intern Med 169, 1587–1594 (2009)

Elevated Potassium Leads to Suboptimal use of RAASi Therapy

Patients on maximal RAASi dose had their treatment reduced or stopped after a hyperkalemic event nearly half the time*

*Patients with CKD at Stages 3-5 were enlisted within the study. In the remaining events, the data period following the hyperkalemia event was insufficient to determine subsequent RAAS inhibitor dose level. K+, potassium; RAASi, renin-angiotensin-aldosterone system inhibitor.

24 1. Epstein M, et al. Am J Manag Care 21(11 Suppl), S212–20 (2015)

Suboptimal Dosing and Discontinuation of RAASi is Associated with Poor Outcomes¹

Adverse outcomes evaluated:

- CKD progression and progression to ESKD
- Stroke and acute myocardial infarction
- Coronary artery bypass and percutaneous coronary intervention

Patients who experienced adverse outcomes or mortality by prior RAASi dosing*

B Doubling of all-cause mortality

*This was a retrospective database analysis, and therefore cannot detect casualty and can only provide associations in the real-world setting. CKD, chronic kidney disease; RAASi, renin-angiotensin-aldosterone system inhibitor; ESKD, end-stage kidney disease

25 1. Epstein M, et al. Am J Manag Care 21(11 Suppl), S212–20 (2015)

Other Strategies to Manage Hyperkalemia¹

Increase potassium distribution and excretion

Loop and thiazide diuretics

Sodium bicarbonate

Potassium binders

Restricting Dietary Potassium is Difficult and has Disadvantages

Many cardio-renal patients already have restricted diets¹

Low potassium diet further restricts consumption of healthy, affordable foods¹

CKD, chronic kidney disease; T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus

27 1. Sanghavi, S. et al. Seminars in Dialysis 26, 597–603 (2013)

Modifiable Lifestyle Factors for Primary Prevention of CKD

Recent review of 104 observational studies (n=2,755,719), demonstrated:¹

CKD, chronic kidney disease

1. Kelly, J. T. et al. JASN, ASN.2020030384 (2020) 28 2. Hunt BD, Cappuccio FP. Stroke. 2014;45(5):1519-1522.

Other evidence suggests that:^{2,3}

Increased dietary potassium intake

Lower risk of all stroke and ischemic stroke

3. Seth A, Mossavar-Rahmani Y, Kamensky V, et al. 2014;45(10):2874-2880.

Post-Test Polling Question

RAASi dose-titration or discontinuation has a negative impact on HR-QoL and clinical outcomes

Post-Test Polling Question

RAASi dose-titration or discontinuation has a negative impact on HR-QoL and clinical outcomes

Potassium binders can be used to rapidly and sustainably reduce serum potassium levels while enabling RAASi in patients with chronic hyperkalemia

Overview of the New Potassium Binders

	Patiromer ¹		
Mechanism	Nonabsorbed cation-exchanger polymer that binds K+ ³		
Site	Colon ³		
Exchange ion for potassium	Calcium/magnesium		
Onset of action	4–7 h ¹		
Adverse events ⁶	Mild to moderate gastrointestinal effects, hypomagnesemia, hypokalemia (3–5.6%)		
Recommended dose	8.4 g QD; dose can be titrated at ≥1-wk intervals in 8.4 g increments to a maximum of 25.2 g QD		

SZC: sodium zirconium cyclosilicate

- 1. VELTASSA® Canadian Product Monograph. Otsuka Canada Pharmaceutical Inc. Date of revision: February 28, 2020.
- 2. LOKELMA[™] Canadian Product Monograph. AstraZeneca Canada Inc. Date of revision: July 23, 2019.
- 32 3. Li, L. et al. Journal of Cardiovascular Pharmacology and Therapeutics 21, 456–465
- (2016) 1 Stavros, F. et al. PLoS One 9, (2014)
- 4. Stavros, F. et al. PLoS One 9, (2014)

Sodium Zirconium Cyclosilicate (SZC)²

Inorganic cation exchanger with a crystalline structure that entraps K+⁴

Entire GI tract⁵

Sodium

1 h²

Mild to moderate gastrointestinal effects, edema, and hypokalemia (0–11%, dose dependent)

10 g TID for 48 h; then 5–10 g QD. No more than 10 g QD for maintenance therapy

5. Kosiborod, M. et al. JAMA 312, 2223–2233 (2014) 6. Vijayakumar, S. et al. Eur Heart J Suppl 21, A41–A47 (2019)

Patiromer Studies Investigating Potential to Enable RAASi

Trial	Design	Population	Key endpoints	Conclusions
Weir MR et al., 2015 (OPAL-HK) ¹	Phase III Phase A (treatment phase): single-bind, single-arm (4 weeks) Phase B (withdrawal phase): placebo-controlled, single-bind (8 weeks)	Phase A: N = 243 Phase B: N = 107 CKD with hyperkalemia receiving RAASi therapy	 Part A: Mean change in K+ from baseline to Week 4 Proportion of normokalemic patients (K+: 3.8 to <5.1 mmol/L) at Week 4 Part B: Treatment group differences in median change in K+ from start of Part B to Part B Week 4 or first visit where K+ was <3.8 or ≥5.5 mmol/L Proportion of patients with mild (K+: ≥5.1 mmol/L) or moderate/severe (≥5.5 mmol/L) hyperkalemia 	 Significant and clinically meaningful serum K+ reduction Maintenance of serum K+ control Ability to keep patients on RAASi medications
Pitt B et al, 2011 (PEARL-HF) ²	Phase II, double-blind, placebo- controlled, randomized, parallel- group (4 weeks)	N = 105 HF, K+ of 4.3–5.1 mmol/L at screening and CKD or history of HK that led to RAASi discontinuation	 Mean change of serum K+ from baseline to the end of the study (Day 28) Proportion of patients with serum K+ 5.5 mmol/L at any time during the trial and the proportion of patients whose spironolactone dose could be increased to 50 mg/day 	 Significantly reduced mean K+ levels Prevented hyperkalemia Allowed a significantly greater percentage of patients to increase spironolactone doses to 50 mg/day
Agarwal R et al., 2019 (AMBER) ³	Phase II, multicenter, double- blind, placebo-controlled, randomized (run-in: 4 weeks; treatment: 12 weeks)	N = 295 CKD and resistant hypertension	 Difference between treatment groups in the proportion of patients remaining on spironolactone at week 12 Difference between treatment groups in the change in systolic AOBP from baseline to week 12 	- Enabled more patients to continue treatment with spironolactone with less hyperkalemia

CKD, chronic kidney disease; K+: potassium; RAASi, renin-angiotensin-aldosterone system inhibitor; T2D, type 2 diabetes

33 1. Weir, M. R. et al. New England Journal of Medicine 372, 211–221 (2015)
2. Pitt, B. et al. Eur Heart J 32, 820–828 (2011)

Patiromer Studies Demonstrating Potential to Enable RAASi

1. Weir MR, et al. N Engl J Med 2015;372:211–21

3. Agarwal R, et al. Lancet. 2019;394:1540-50

34 2. Pitt B, et al. Eur Heart J. 2011;32:820-8

Patiromer Safety and Tolerability Profile¹

Most common adverse reactions were GI disorders and hypomagnesemia

System Organ Class	Adverse Reaction	Incidence (%)		
	Constipation	6.2	Generally	
Claicardara	Diarrhea	3.0		
Graisorders	Abdominal pain	2.9 • General • None r		
	Flatulence	1.8		
Metabolism and nutrition disorders	Hypomagnesemia	5.3	 Mild-to-m No patien Serum m 1 month a suppleme low serum 	
	Hypokalemia	1.5		

AE: adverse event; GI: gastrointestinal tract

35 1. Veltassa[®] Product Monograph, 2020.

Comments

mild-to-moderate
 resolved spontaneously or with treatment
 orted as serious

noderate nt with serum level <0.4 mmol/L agnesium should be monitored for at least after initiating treatment and magnesium entation considered in patients who develop m magnesium levels

Main Studies Evaluating Sodium Zirconium Cyclosilicate (SZC)

Trial	Design	Population	Objectives	Conclusions
Ash SR et al., 2015 (ZS-002) ¹	Phase II, randomized, double- blind, placebo-controlled, dose- escalating clinical trial (48 hours)	N = 90 Hyperkalemia, CKD 5.0 to 6.0 mmol/L Stage 3 CKD	Assess safety and efficacy	- Well-tolerated in patients with stable CKD and hyperkalemia leading to a rapid, sustained reduction in serum potassium
Packham DK et al., 2015 (ZS-003) ²	Phase III, randomized, double- blind, placebo-controlled, two- stage, dose-ranging clinical trial (14 days)	N = 753 Hyperkalemia regardless of etiology 5.0 to 6.5 mmol/L	Confirm rapid K+ control	 Significant reduction in potassium levels at 48 hours Normokalemia maintained during 12 days of maintenance therapy
Kosiborod M et al., 2014 (ZS-004: HARMONIZE TRIAL) ³	Phase III, randomized, double- blind, placebo-controlled clinical trial (1 month + 11- month extension)	N = 258 Hyperkalemia regardless of etiology > 5.1 mmol/L	Establish an extended dose	- All 3 tested doses of SZC resulted in lower potassium levels and a higher proportion of patients with normal potassium levels for up to 28 days
Spinowitz BS et al., 2019 (ZS-005) ⁴	Phase III, open-label, two-part (12 months)	N = 751 Hyperkalemia regardless of etiology > 5.1 mmol/L	Establish long-term safety and efficacy	- Maintenance of normokalemia without substantial RAASi changes for ≤ 12 months

CKD: chronic kidney disease; RAASi: renin-angiotensin-aldosterone system inhibitor; SZC: sodium zirconium cyclosilicate
1. Ash, S. R. et al. Kidney Int 88, 404–411 (2015)
3. Kosiborod, M. et al. JAMA 312, 2223–2233 (2014)
3. Kosiborod, M. et al. JAMA 312, 2223–2233 (2014)
3. Kosiborod, M. et al. JAMA 312, 2223–2233 (2014)
3. Kosiborod, M. et al. JAMA 312, 2223–2233 (2014)
3. Kosiborod, M. et al. JAMA 312, 2223–2233 (2014)
3. Kosiborod, M. et al. JAMA 312, 2223–2233 (2014)
3. Kosiborod, M. et al. JAMA 312, 2223–2233 (2014)

SZC Among Individuals with Hyperkalemia – A 12-Month Study (ZS-005)¹

maintenance phase

SZC Safety and Tolerability Across Clinical Trials¹

The most commonly reported adverse reaction was edema related events which were reported in 5.7% of patients treated with SZC; 1.7, 1.8, 5.3 and 14.3% of	Gastrointestinal: has severe gastrointestinal gastrointestinal surgery constipation, bowel obs
patients randomized to placebo, SZC 5 g, 10 g, or 15 g once daily up to one month, respectively. SZC 15 g dose is not approved for use in Canada.	Cardiovascular: Durin prolongation can be ob a decline in serum pota
In clinical trials 4.1% of patients treated with SZC developed hypokalemia with a serum potassium value <3.5 mmol/L, which was resolved with dose adjustment or discontinuation of SZC.	Interactions: SZC can resulting in changes in co-administered drugs Therefore, oral medica bioavailability should b or 2 hours after SZC.

SZC: sodium zirconium cyclosilicate

1. LOKELMA[™] Canadian Product Monograph. AstraZeneca Canada Inc. Date of revision: July 23, 2019. 38

not been studied in patients with disorders or history of major y. Avoid use in patients with severe struction or impaction.

ng correction of hyperkalemia, QT oserved as the physiologic result of assium concentration.

n transiently increase gastric pH, solubility and absorption kinetics of with pH-dependent bioavailability. ations with gastric pH-dependent e administered at least 2 hours before

Considerations with the New Potassium Binders

	Patiromer ¹
Mechanistic considerations	Uses calcium (as opposed to sodium) as the counter-ion which makes it a more optimal choice in patients with HF and CKD to avoid volume overload and hypertension ³
Emergency setting	 SZC starts reducing serum potassium 1 hour after Patiromer results in a statistically significant reduced
Nonemergent setting	May be considered for the patients prone to recurre
Drug-drug interactions	Administer at least 3 hours before or 3 hours after other oral medicinal products
Adverse events (of interest)	Hypomagnesemia, gastrointestinal adverse events, and hypokalemia

CKD, chronic kidney disease; HF, heart failure; SZC, sodium zirconium cyclosilicate.

1. VELTASSA[®] Canadian Product Monograph. Otsuka Canada Pharmaceutical Inc. Date of revision: October 4, 2019.

2. LOKELMA[™] Canadian Product Monograph. AstraZeneca Canada Inc. Date of revision: July 23, 2019.

39 3. Vijayakumar, S. et al. Eur Heart J Suppl 21, A41–A47 (2019)

SZC²

Highly selective inorganic, insoluble cation that preferentially exchanges potassium for sodium and hydrogen, thereby entrapping K+ in the intestine³

er administration² ction in serum potassium at 7 hours¹

nce or patients with nonemergent hyperkalemia

Oral medications with gastric pH-dependent bioavailability should be administered at least 2 hours before or 2 hours after

Edema, gastrointestinal adverse events, and hypokalemia

Post-Test Polling Question

Potassium binders can be used to rapidly and sustainably reduce serum potassium levels while enabling RAASi in patients with chronic hyperkalemia

Post-Test Polling Question

Potassium binders can be used to rapidly and sustainably reduce serum potassium levels while enabling RAASi in patients with chronic hyperkalemia

HYPERKALEMIA

Which of the following statements is correct?

A 3 re T ir h

Β.

- A. About half of patients with CKD stage
 3–5 with hyperkalemia had ≥2
 recurrences within 1 year
 - The presence of comorbidities does not influence the occurrence of hyperkalemia
- C. Suboptimal RAASi dosing does not impact patient outcomes
- D. RAASi dose reduction is still required with the new potassium binders

HTORANTH 30.9 39.0983 New Advances in the Management of Hyperkalemia and Hyperphosphatemia Phosphorus Potassium

Hyperphosphatemia

Louis-Philippe Girard MD MBT FRCPC

Hyperphosphatemia in advanced CKD is associated with increased risk of morbidity and mortality

Phosphate Level is Associated With All-Cause and Cardiovascular Mortality in the General Population¹

HR: hazard ratio 1. Vervloet MG, Sezer S, Massy ZA, et al. Nat Rev Nephrol. 2017;13(1):27-38. 45

Hyperphosphatemia Is Poorly Controlled in Advanced CKD¹

Approximately 20% of patients with CKD stage 4 and 40% of those with CKD stage 5 had hyperphosphatemia

- Prospective, community-based, non-interventional, cohort study
- 1,814 patients with CKD over the age of 40

CKD: chronic kidney disease; P: phosphorus 1. Levin A, et al. Kidney Int 2007; 71(1):31–8. 46

% with elevated serum P, defined

Vascular Calcification

Association of Serum Phosphate with Vascular and Valvular Calcification in Moderate CKD¹

Proportion of calcified sites by serum phosphate group

CKD: chronic kidney disease

1. Adeney KL, Siscovick DS, Ix JH, et al. J Am Soc Nephrol. 2009;20(2):381-387. 48

Number of Calcified sites

Vascular Calcification

Biochemical changes on study by treatment arm¹

CKD: chronic kidney disease

49 1. Block GA, Wheeler DC, Persky MS, et al. J Am Soc Nephrol. 2012;23(8):1407-1415.

Uncontrolled Hyperphosphatemia is Associated with Increased Cardiovascular and Mortality Risk

Retrospective U.S. database analysis of patients on hemodialysis (N=14,829)¹

Phosphorus Quintile, mmol/L (mg/dL)	Relative risk of CV event	95% CI	p value
≤1.42 (≤4.4) (Reference)	1.0	NA	NA
1.43 to 1.71 (4.5 to 5.3)	1.06	1.00 to 1.13	<0.05
1.72 to 2.03 (5.4 to 6.3)	1.13	1.06 to 1.19	<0.0001
2.04 to 2.43 (6.4 to 7.5)	1.14	1.07 to 1.22	<0.0001
>2.43 (>7.5)	1.25	1.17 to 1.33	<0.0001
Phosphorus data missing	1.13	0.90 to 1.41	NA

CI: confidence interval; CKD: chronic kidney disease; CV: cardiovascular

1. Slinin Y, et al. J Am Soc Nephrol 2005; 16(6):1788-93

50 2. Tentori F, et al. Am J Kidney Dis 2008; 52:519–30.

3. KDIGO. Kidney Int 2009; 76:S1–130.

Risk of all-cause mortality²

NB. Normal range: 0.8–1.4 mmol/L (2.5–4.5 mg/dL)³

Phosphorus, mmol/L (mg/dL)

Uncontrolled Hyperphosphatemia Increases Mortality Risk

Large U.S. observational study of hemodialysis patients with at least 1 determination of serum phosphorus and calcium during the last 3 months (N=40,538)¹

Serum phosphorus >1.6 mmol/L (5.0 mg/dL) was associated with an ↑ relative risk of death¹

Case-mix adjusted Multivariable adjusted 2.2 2.0 Relative risk of death 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 <0.97 0.97 -0.97 -1.62 -1.29 1.62 1.94 2.26

<3

CKD: chronic kidney disease

1. Block GA, et al. J Am Soc Nephrol 2004; 15(8):2208-18.

2. KDIGO. Kidney Int 2009; 76:S1–130. 51

NB. Normal range: 0.8–1.4 mmol/L (2.5–4.5 mg/dL)²

Serum phosphorus concentration, mmol/L (mg/dL)

Post-Test Polling Question

Hyperphosphatemia in advanced CKD is associated with increased risk of morbidity and mortality

Post-Test Polling Question

Hyperphosphatemia in advanced CKD is associated with increased risk of morbidity and mortality

There is conclusive evidence that phosphate-binding agents are effective agents to reduce morbidity and mortality in patients with ESRD

Overview of Phosphate Binders^{1,2}

		1			
Туре	Daily dose	Advantages			
Aluminum hydroxide	No safe dose identified	Effective, inexpensive	A O to		
Calcium carbonate	Variable	Effective, inexpensive	P P C		
Sevelamer hydrochloride	3 pills three	Effective; lipid-lowering effect; potential cardioprotective effect, no calcium			
Sevelamer carbonate	(9 pills/days)	Effective; lipid-lowering effect; potential cardioprotective effect; no calcium; available as a powder, which may reduce pill burden	С		
Lanthanum carbonate	1 pill three times daily (3 pills/day)	Effective; no calcium; low pill burden	C v to		
Sucroferric oxyhydroxide	3 pills per day	Effective; no calcium; reduced pill burden relative to sevelamer; does not lead to iron overload	С		

GI: gastrointestinal

1. Umeukeje EM, et al. Patient Prefer Adherence 2018; 12:1175–91

55 2. Carfagna F, et al. Expert Opin Drug Saf 2018; 17(6):597-607

Disadvantages

Associated with cognitive disturbances, osteomalacia, and anemia. Potential for aluminum oxicity. Patient requires careful monitoring

Potential for increased hypercalcemia; potential for PTH suppression; could lead to vascular calcification; GI side effects; high pill burden

Cost; high pill burden; GI side effects such as abdominal bloating, diarrhea, and constipation. Potential development of metabolic acidosis

Cost; high pill burden; associated with GI side effects

Cost; associated with GI side effects such as nausea, omiting; systemic absorption may be a concern due o potential for accumulation

Cost, discolored feces, diarrhea, nausea

Systematic Review and Network Meta-Analysis of Phosphate Binders in CKD¹

Tre	atment Effect	All-cause Mortality
Calcium	vs. Sevelamer	
Lanthanum		
Iron		I → ↓ → ↓
CalSevMag		
Placebo		
Diet		
		↓↓
Lanthanum	vs. Calcium	
Iron		
CalSevMag		
Placebo		
Diet		
Iron	vs. Lanthanum	
CalSevMag		
Placebo		
Diet		
CalSevMag	vs. Iron	
Placebo		
Diet		
Diacaba		
Placebo	vs. CalSeviviag	
Diel		
Diet	vs. Placebo	↓

56 1. Sekercioglu N, et al. PLoS One 2016; 11(6):e0156891

Mean with 95%Cl
1.92 (1,22,3.00)
1.80 (0.47,6.82)
1.71 (0.71,4.11)
0.76 (0.27,2.15)
1.38 (0.11,17.44)
0.95 (0.18,5.11)
0.94 (0.25,3.55)
0.89 (0.41,1.95)
0.40 (0.13,1.19)
0.72 (0.06,9.10)
0.50 (0.09,2.77)
0.95 (0.26,3.41)
0.42 (0.12,1.47)
0.77 (0.04, 13.22)
0.53 (0.09, 3.25)
0.44 (0.13,1.53)
0.81 (0.06,11.46)
0.56 (0.09,3.25)
1.83 (0.12,28.08)
1.26 (0.34,4.69)
0.69 (0.03, 14.30)

Mortality Benefit for Non-calcium vs. Calcium Phosphate Binders in CKD¹

	Non-calc	ium binders	Calciu	m binders	Weight		Risk ratio (95% CI)
	Events	Total patients	Events	Total patients			
RCTs							
Barreto et al (2008) ¹²	1	52	8	49	0.3%		0.12 (0.02-0.91)
Block et al (2007) ⁹	11	60	23	67	3.2%		0.53 (0.28—1.00)
Chertow et al (2002) ⁵	6	99	5	101	1.0%		1.22 (0.39—3.88)
Di lorio et al (2012) ²²	12	107	22	105	3.0%		0.54 (0.28—1.03)
Kakuta et al (2011) ²⁰	0	91	0	92			Not estimable
Qunibi et al (2008) ¹³	3	100	7	103	0.8%		0.44 (0.12—1.66)
Russo et al (2007) ¹⁰	0	27	0	28			Not estimable
Sadek et al (2003) ⁶	1	21	3	21	0.3%		0.33 (0.04—2.95)
Suki (2008) ¹⁴	267	1053	275	1050	24.5%	+	0.97 (0.84—1.12)
Takei et al (2008) ¹⁵	0	22	0	20			Not estimable
Wilson et al (2009) ¹⁶	135	680	157	674	17.9%		0.85 (0.70—1.05)
Subtotal	436	2312	500	2310	50.9%		0.78 (0.61—0.98)
Test for overall effect: Z=2.09 (Non-randomised studies	(p=0.04)						
Borzecki et al (2007) ¹¹	148	608	228	769	20.6%		0.82 (0.69—0.98)
Jean et al (2011) ¹⁹	62	247	109	432	12.7%	-	0.99 (0.76—1.30)
Panichi et al (2010) ¹⁷	74	242	170	515	15.9%		0.93 (0.74—1.16)
Subtotal	284	1097	507	1716	49.1%	•	0.89 (0.78—1900)
Heterogeneity: $T^2=0.00$; $x^2=1.5$	57, df=2 (p=0.46	5); l ² =0%				·	
Test for overall effect: Z=1.90 ((p=0.06)						
Total	720	3409	1007	4026	100.0%	•	0.87 (0.77—0.97)
Heterogeneity: T ² =0.01; x ² =13.88, df=10 (p=0.18); l ² =28%							
Test for overall effect: Z=2.40 ((p=0.02)						
Test for subgroup differences:	x ² =0.92, df=1 (p)=0.34), l²=0%					
		,.					
						0.02 0.1 1 10 50	
				Favour	s non-calcium	←	Favours calcium

Evidence that Phosphate Binders Affect Hard Clinical Endpoints is Inconclusive¹

When compared amongst phosphate binders, sevelamer reduced all-cause mortality in dialysis patients by 50–60% vs calcium whereas other comparisons* did not reach statistical significance or were not tested

No drug class lowered cardiovascular events or cardiovascular mortality when compared to placebo.

Туре	Η
Magnesium containing phosphate binders	-
	•
Sevelamer	•
Bixalomer, colestilan	-
Lanthanum carbonate	•
Ferric citrate	•
Sucroferric oxyhydroxide ²	•

*Comparison between phosphate binders containing sevelamer, colestilan, bixalomer, lanthanum, iron compounds, calcium, nicotinic acid, and calcium plus magnesium CKD: chronic kidney disease; eGFR: estimated glomerular filtration rate

1. Floege J. J Nephrol. 2020;33(3):497-508

2. Coyne DW et al. Kidney Med 2020; doi.org/10.1016/j.xkme.2020.01.009

ard clinical endpoints

- No reduction of proteinuria in CKD patients (eGFR > 15 ml/min)
- Lower all-cause mortality in CKD patients (stages 3–5D) but not cardiovascular event rate or mortality compared to calcium-containing phosphate binders in most studies
- Lower all-cause mortality but not cardiovascular event rate compared to other phosphate binders
- Fewer hospital admissions and less frequent initiation of dialysis in one small study in non-dialysis CKD patients
- Patients on maintenance SFOH had a significantly lower rate of hospital admissions > 24 hours vs. patients who discontinued SFOH and switched to other phosphate binders

Two phosphAte taRGets in End-stage renal disease Trial (TARGET) – Sustained Separation in Serum Phosphate Concentration¹

Sustained separation in serum phosphate concentration in patients randomized to a liberalized serum phosphate target or an intensive serum phosphate

1. Wald R, Rabbat CG, Girard L, et al. Clin J Am Soc Nephrol. 2017;12(6):965-973. 59

Two phosphAte taRGets in End-stage renal disease Trial (TARGET) – Sustained Separation in the Dose of Elemental **Calcium Administered**

Sustained separation in the dose of elemental calcium administered in patients randomized to a liberalized phosphate target) or an intensive serum phosphate target

1. Wald R, Rabbat CG, Girard L, et al. Clin J Am Soc Nephrol. 2017;12(6):965-973. 60

Two phosphAte taRGets in End-stage renal disease Trial (TARGET) – Outcomes Were Comparable Between Groups¹

Clinical outcomes by intervention group

Outcome	Liberalized, n=51	Intensive, n=53	Relative Risk (95% CI)
Vascular death or vascular event	3 (6)	5 (9)	0.62 (0.16 to 2.48)
Fracture	3 (6)	1 (2)	3.12 (0.34 to 29.0)
Calciphylaxis	0 (0)	0 (0)	NA
Parathyroidectomy	1 (2)	1 (2)	1.04 (0.07 to 16.2)
Hospitalization (all cause)	18 (35)	14 (26)	1.34 (0.75 to 2.39)
Hospitalization for vascular reason	5 (10)	5 (9)	1.04 (0.32 to 3.38)
Serious adverse event (not listed above)	0 (0)	0 (0)	NA

Data reported as number (%). 95% CI, 95% confidence interval; NA, not applicable

^{61 1.} Wald R, Rabbat CG, Girard L, et al. Clin J Am Soc Nephrol. 2017;12(6):965-973.

There is conclusive evidence that phosphate-binding agents are effective agents to reduce morbidity and mortality in patients with ESRD

Post-Test Polling Question

There is conclusive evidence that phosphate-binding agents are effective agents to reduce morbidity and mortality in patients with ESRD

Phosphate-binding agents have demonstrated phosphate-lowering efficacy in real-world studies, with a substantially lower pill burden compared to traditional phosphate binders

Sucroferric Oxyhydroxide

Calcium-free binder indicated for the control of serum phosphorus levels in adult patients with ESRD on dialysis

Dosing

- Recommended starting dose: 500 mg of iron TID with meals
- Maximum recommended dose: 3,000 mg of iron (6 tablets)
- No adjustments needed in elderly

ESRD: end-stage renal disease; TID: three times weekly

1. VELPHORO[®] Product Monograph. Date of preparation: October 4, 2019 65

SFOH Effectiveness in Chronic Hemodialysis Patients – 12-month Follow-up Real-world Data¹

De-identified patient records for in-centre hemodialysis patients who switched from another PB to SFOH (March 2014-March 2015)

Proportion of patients with phosphorus ≤1.78 mmol/L compared between 3-month intervals (Q1–Q4) of SFOH treatment and baseline

CaAc: calcium acetate; LC: lanthanum carbonate; PB: phosphate binder; Sev: sevelamer; SFOH: sucroferric oxyhydroxide; Q:quarter 1. Kendrick J, et al. J Ren Nutr. 2019 Sep;29(5):428-437 66

Retrospective Analysis of Pharmacy Data of SFOH in Patients on Chronic Hemodialysis (≤6 mo)¹

Change in percentage of patients with sP≤1.78 mmol/L after switching from other PBs (Month 1–3 cohort; n=1,029)

SFOH demonstrated control of phosphorous levels with a low mean prescribed number of pills per day

*p<0.001, +KDOQI recommended phosphorous

CaAc: calcium acetate; LC: lanthanum carbonate; PB: phosphate binder; Sev: sevelamer; SFOH: sucroferric oxyhydroxide; P: phosphorus 1. Coyne D et al. Clin Nephrol 2017; 2:59-67 67

- Proportion of patients with phosphorus ≤1.78 mmol/L and the mean prescribed PB pills/day were compared
 - Change in percentage of patients with sP ≤1.78 mmol/L after switching from other PBs (Month 4–6 cohort; n=424)

Prescribed PB pills/day

Retrospective, Comparative Cohort Study of SFOH in Maintenance Hemodialysis (2 years)¹

68

De-identified records extracted from Fresenius Kidney Care electronic records between April 2014 and April 2015

Patients prescribed 2 years of uninterrupted SFOH therapy (maintenance SFOH) were compared with patients who discontinued SFOH therapy within 90 days of initiation and switched to other PB(s) for 2 years

Patients who maintained 2 years of SFOH therapy achieved lower phosphorous levels, were more likely to achieve target serum phosphorus levels of \leq 1.78 mmol/L, and were prescribed ~50% fewer phosphate binder pills per day

* Mean change (Q1-Q8) from baseline (-Q1)

PB: phosphate binder; SFOH: sucroferric oxyhydroxide; dSFOH: discontinued SFOH, non-SFOH binder therapy; sP: serum phosphorus 1. Coyne DW et al. Kidney Med 2020; doi.org/10.1016/j.xkme.2020.01.009

Post-Test Polling Question

Phosphate-binding agents have demonstrated phosphate-lowering efficacy in real-world studies, with a substantially lower pill burden compared to traditional phosphate binders

Post-Test Polling Question

Phosphate-binding agents have demonstrated phosphate-lowering efficacy in real-world studies, with a substantially lower pill burden compared to traditional phosphate binders

Knowledge Question 2

Hyperphosphatemia

Which of the following statements is correct?

F d is re

Α.

p c S p

- Hyperphosphatemia is rare in dialysis patients
- B. Serum phosphorus >1.6 mmol/L is associated with an increased relative risk of death
- C. There is conclusive evidence that phosphate binders lower cardiovascular mortality
- D. SFOH demonstrated control of phosphorous levels with a high pill burden

Taking Action

Juliya Hemmett MD MHPE FRCPC

What changes are you likely to make in the way you manage patients with <u>hyperkalemia</u> based on what you've **learned today?**

Apply epidemiologic data to identify patients at high risk

Apply clinical efficacy and safety data on new potassium binders to reduce the impact of hyperkalemia

Construct a plan to integrate recent evidence presented today into my practice

- I am already successfully implementing the presented strategies into my practice
- The topics presented did not apply to my patients and/or practice

What changes are you likely to make in the way you manage patients with hyperphosphatemia based on what you've learned today?

Apply epidemiologic data to identify patients at high risk

Apply clinical efficacy and safety data on new phosphate binders to reduce the impact of hyperphosphatemia

Construct a plan to integrate recent evidence presented today into my practice

- I am already successfully implementing the presented strategies into my practice
- The topics presented did not apply to my patients and/or practice

Action Plan

Based on what you have seen today, what specific action(s) do you expect to take over the next 6 months? Select all that apply.

- Read/re-read publications and clinical trials on the new potassium and phosphate binders
- Review my charts to determine if my patients with hyperkalemia or hyperphosphatemia would benefit from the latest evidence presented today
- Attend additional CHE events on the optimal management of hyperkalemia and/or hyperphosphatemia

• Discuss strategies with my colleagues to enable RAASi in patients with or at risk of hyperkalemia

 Schedule grand rounds or a journal club to review this data with my colleagues

• Engage with my allied health care colleagues to discuss dietary restriction of potassium and/or phosphate

FOR MAN THE New Advances in the Management of Hyperkalemia and Hyperphosphatemia

Questions and Discussion

Canadian Society of Nephrology/ Société canadienne de néphrologie CSN/SCN

HIFOR ANTIL.

New Advances in the Management of Hyperkalemia and Hyperphosphatemia

Thank You!

Please ensure to complete the electronic evaluation.

Canadian Society of Nephrology/ Société canadienne de néphrologie CSN/SCN

