

**Challenges & Strategies to Improve BP Measurement During COVID-Era** 

# Thank you!

Thank you to AstraZeneca Canada for providing an unrestricted educational grant to support this webinar.





Canadian Society of Nephrology/ Société canadienne de néphrologie ISN/SCN Your audio line has been automatically MUTED and your video camera has been turned OFF

- If you have any <u>technical issues</u>, please use the CHAT and you will be contacted with assistance.
- Q

If you have any <u>questions</u> during the virtual webinar, please click on the Q&A icon at the bottom of your screen and type your question. Due to time constraints, we will do our utmost to answer all your questions that we can.





- You will receive an email directly from the CSN Admin office following this presentation to complete an electronic evaluation.
  - Your feedback helps shape future educational initiatives! Completion of the evaluation is appreciated!
- You will then be emailed your Certificate of Participation.





Canadian Society of Nephrology/ Société canadienne de néphrologie SN/SCN

#### Disclosure of Potential Conflicts of Interest

| Dr. Nadia Khan     | <ul> <li>Organizer and speaker for national conference:<br/>CCRN Canadian Cardiovascular Research Network (not for profit)</li> <li>Peer review grants – CIHR, MSFHR SPOR (not for profit)</li> <li>Guideline author, Board Member, Board Chair – all unpaid volunteer positions –<br/>President Hypertension Canada (2016-2020)</li> <li>Diabetes Canada Guideline Author</li> </ul> |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dr. Laura Kuyper   | <ul> <li>Speaking Honoraria: Servier, AstraZeneca, Valeant</li> <li>HF Advisory Board: AstraZeneca</li> <li>Small Clinical Grant: Servier</li> </ul>                                                                                                                                                                                                                                  |
| Dr. Marcel Ruzicka | No conflicts to declare                                                                                                                                                                                                                                                                                                                                                               |
|                    | Hypertension Canadian Society of Nephrology/<br>Société canadienne de néphrologie<br>CANADA                                                                                                                                                                                                                                                                                           |



### Challenges & Strategies to Improve BP Measurement during the COVID-era

#### Moderator:

Nadia Khan MD MSc

Professor and Head, Division of General Internal Medicine, University of British Columbia

Immediate Past President Hypertension Canada (2016-2020)

International Society of Hypertension Council

American Society of Hypertension Clinical Specialist in Hypertension



# Is There an Interaction Between ACE inhibitors/ARBs and COVID-19?





Reinhold Kreutz, et al. European Society of Hypertension COVID-19 Task Force Review of Evidence, Cardiovascular Research, 2020

#### Impact of RAAS Inhibitors on COVID-19 Patient Outcomes

| Author (Publication Date)                            | Country       | N (HTN*)          | Type of Study                             | Agent                                                            | Outcom   | Endpoints                                                                                      |
|------------------------------------------------------|---------------|-------------------|-------------------------------------------|------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------|
| Peng et al <sup>32</sup><br>March 2, 2020            | China         | 112<br>(92)       | Retrospective<br>Cohort                   | ACE-I/ARB                                                        | Neutral  | No effect on morbidity or mortality                                                            |
| Meng et al. <sup>33</sup><br>March 17, 2020          | China         | 417<br>(51)       | Retrospective<br>Cohort                   | ACE-I/ARB                                                        | Positive | Lower rate of severe disease                                                                   |
| Huang et al. <sup>34</sup><br>March 30, 2020         | China         | 50<br>(50)        | Retrospective<br>Cohort                   | ACE-I/ARB                                                        | Neutral  | No difference in in-hospital mortality                                                         |
| Feng et al. <sup>35</sup><br>April 10, 2020          | China         | 476<br>(113)      | Retrospective<br>Cohort                   | ACE-I/ARB                                                        | Positive | Increased ACE-I/ARB use in moderate vs severe<br>COVID-19 group                                |
| Zhang et al. <sup>24</sup><br>April 17, 2020         | China         | 1,128<br>(1,128)  | Retrospective<br>Cohort                   | ACE-I/ARB                                                        | Positive | Decreased all-cause mortality                                                                  |
| Li et al. <sup>36</sup><br>April 23, 2020            | China         | 1,178<br>(362)    | Retrospective<br>Cohort                   | ACE-I/ARB                                                        | Neutral  | No association with severity of illness or mortality                                           |
| Yang et al. 37<br>April 29, 2020                     | China         | 126<br>(126)      | Retrospective<br>Cohort                   | ACE-I/ARB                                                        | Neutral  | Lower proportion of critically ill and lower death rate<br>with ACE-I/ARB use                  |
| <b>Mancia et al.</b> <sup>25</sup><br>May 1, 2020    | Italy         | 6,272<br>(3,632)  | Population<br>Based Case<br>Control Study | ACE-I/ARB                                                        | Neutral  | No association with number of patients or severe/fatal disease                                 |
| Reynolds et al. <sup>26</sup><br>May 1, 2020         | USA           | 12,594<br>(2,573) | Retrospective<br>Cohort                   | ACE-I/ARB                                                        | Neutral  | No increase in likelihood of positive test or risk of<br>severe disease                        |
| Mehra et al. 38                                      | Asia, Europo, | 8,010             | Retrospective                             | ACE-I/ARB                                                        | Neutral  | No increased risk of in-hospital death                                                         |
| May 1, 2020                                          | North America | (2,346)           | Cohort                                    |                                                                  |          |                                                                                                |
| Mehta et al. <sup>39</sup><br>May 5, 2020            | USA           | 18,472<br>(7,312) | Retrospective<br>Cohort                   | ACE-I/ARB                                                        | Neutral  | No association between ACE-I/ARB use and positive<br>COVID-19 test                             |
| Conversano et al. 40<br>May 8, 2020                  | Italy         | 191<br>(96)       | Retrospective<br>Cohort                   | ACE-I/ARB                                                        | Neutral  | ACE-I/ARB treatment not associated with increased<br>mortality or worse clinical presentation. |
| <b>de Abajo et al.</b> <sup>41</sup><br>May 14, 2020 | Spain         | 1,139<br>(617)    | Population<br>Based Case<br>Control Study | ACE-I/ARB/<br>Aldosterone<br>Antagonists/<br>Renin<br>Inhibitors | Neutral  | No increase in the risk of hospital or ICU admission, fatal cases                              |

\*with hypertension diagnosis and positive COVID-19 test

| Society                         | Summary of recommendations                                           | Last Statement Update |
|---------------------------------|----------------------------------------------------------------------|-----------------------|
| European Society of             | Recommend continuing ACEis/ARBs due to lack of evidence to           | March 12, 2020        |
| Hypertension                    | support differential use in COVID-19 patients. In those with         |                       |
|                                 | severe symptoms or sepsis, antihypertensive decisions should be      |                       |
|                                 | made on a case-by-case basis taking into account current             |                       |
|                                 | guidelines                                                           |                       |
| European Society of Cardiology  | Strongly encourage continuing ACEis/ARBs due to lack of              | March 13, 2020        |
| Council on Hypertension         | evidence to support discontinuing                                    |                       |
| Hypertension Canada             | Recommend continuing ACEis/ARBs due to lack of evidence that         | March 13, 2020        |
|                                 | patients with hypertension or those treated with ACEis/ARBs are      |                       |
|                                 | at higher risk of adverse outcomes from COVID-19 infection           |                       |
| Canadian Cardiovascular Society | Strongly encourage continuing ACEis/ARBs and Angiotensin             | March 15, 2020        |
|                                 | Receptor Neprilysin Inhibitors due to a lack of clinical evidence to |                       |
|                                 | support withdrawal of these agents                                   |                       |
| The Renal Association, United   | Strongly encourage continuing ACEis/ARBs due to unconvincing         | March 15, 2020        |
| Kingdom                         | evidence that these medications increase risk                        |                       |
| International Society of        | Strongly recommend that the routine use of ACEis/ARBs to treat       | March 16, 2020        |
| Hypertension                    | hypertension should not be influenced by concerns about              |                       |
|                                 | COVID-19 in the absence of compelling data that ACEis/ARBs           |                       |
|                                 | either improve or worsen susceptibility to COVID-19 infection        |                       |
|                                 | nor do they affect the outcomes of those infected                    |                       |
| American College of Physicians  | Encourage continuing ACEis/ARBs because there is no evidence         | March 16, 2020        |
|                                 | linking them to COVID-19 disease severity, and discontinuation       |                       |
|                                 | of antihypertensive therapy without medical indication could in      |                       |
|                                 | some circumstances result in harm                                    |                       |



#### Cardiovascular death rate per 100,000 in Canada from 2007 to 2017





#### Hypertension awareness, treatment and control rates in Canadian women from 2007 to 2017





BLOOD PRESSURE MEASUREMENT AND TREATMENT TARGETS IN THE COVID-ERA

Dr. Laura Kuyper

Dr. Nadia Khan Dr. Marcel Ruzicka

November 2020

### LEARNING OBJECTIVES

- Understand importance of out-of-office diagnosis of hypertension
- Discuss BP monitoring strategies during COVID-era
- Review differences in office vs home BP measurement (HBPM)
  - Understand correct BP technique for each measurement method
- Discuss Hypertension Canada's Device Recommendations Program

#### **BP MONITORING DURING PANDEMIC - CASE**

- ► 46 yo M diagnosed with HTN prior to pandemic
- Still not below target of <135/85 at last in-person visit → antihypertensives were increased
- During current telehealth visit he reports his home BPs over phone to you:
  - Uses hand-me-down home BP device borrowed from a family member older device that requires manual inflation
  - Provides you with 5 BP measurements taken over the last month, performed at random times
  - Often checks his BP at dinner table, with his young kids nearby

#### WHAT ARE YOUR RECOMMENDATIONS TO IMPROVE HIS HOME BP MEASUREMENT TECHNIQUE?

- A. Ensure his home BP device is recommended by Hypertension Canada
- B. Recommend checking BP in a.m. before breakfast and 2 hours after dinner, before taking meds
- C. Suggest sitting in a quiet location, ensure back supported, feet flat on ground
- D. Measure BP in non-dominant arm, or arm with higher BP if >10mmHg, difference between arms is known
- E. All of the above

#### WHAT ARE YOUR RECOMMENDATIONS TO IMPROVE HIS HOME BP MEASUREMENT TECHNIQUE?

- A. Ensure his home BP device is recommended by Hypertension Canada
- B. Recommend checking BP in a.m. before breakfast and 2 hours after dinner, before taking meds
- C. Suggest sitting in a quiet location, ensure back supported, feet flat on ground
- D. Measure BP in non-dominant arm, or arm with higher BP if >10mmHg, difference between arms is known
- E. <u>All of the above</u>

# BLOOD PRESSURE MANAGEMENT DURING COVID PANDEMIC

More reliance on out-of-office BP measurement during pandemic

- GP/specialist office visits scaled back
- Appointments largely via Telehealth (may become more long term strategy)
- Reliance on home BP measurement significantly increased

Gerke, S., Shachar, C., Chai, P.R. *et al.* Regulatory, safety, and privacy concerns of home monitoring technologies during COVID-19. *Nat Med* **26**, 1176–1182 (2020).

 Hypertension Canada currently recommends out-of-office measurement for <u>diagnosis</u>; office BP measurement for <u>monitoring</u>
 however – recent evidence supports HBPM for monitoring also



#### **Review**

#### A New Algorithm for the Diagnosis of Hypertension in Canada

Lyne Cloutier, RN, PhD,<sup>a</sup> Stella S. Daskalopoulou, MD, PhD,<sup>b</sup> Raj S. Padwal, MD, MSc,<sup>c</sup> Maxime Lamarre-Cliche, MD,<sup>d</sup> Peter Bolli, MD,<sup>e</sup> Donna McLean, RN, NP, PhD,<sup>f</sup> Alain Milot, MD, MSc,<sup>g</sup> Sheldon W. Tobe, MD, MSc(HPTE),<sup>h</sup> Guy Tremblay, MD,<sup>i</sup> Donald W. McKay, PhD,<sup>j</sup> Raymond Townsend, MD,<sup>k</sup> Norm Campbell, MD,<sup>1</sup> and Mark Gelfer, MD<sup>m</sup>

Published in 2015 to address 2 major <u>pitfalls of BP measurement</u> in previous Hypertension Canada recommendations

Reliance on auscultatory (manual) office BP measurements

Manual BP errors include hearing deficits, rounding errors, rapid cuff deflation; standardized manual technique usually not performed in routine practice

Lack of early identification of white coat hypertension

New algorithm put forth for <u>diagnosing</u> HTN in Canada ,



# DIAGNOSING HYPERTENSION

- Out of office assessment is the preferred means of <u>diagnosing</u> HTN (ambulatory or home BP measurement)
- 2. Office measurement should be automated (AOBP), not manual



# OUT-OF-OFFICE BP MEASUREMENTS IN DIAGNOSING HTN

 Out-of-office measurement identifies white coat hypertension (WCH) and masked hypertension (MH)



- WCH high office BP, normal out-of-office BP (no target organ damage)
  - Prevalence up to 30% of patients with high OBP (Huang et al J Hypertens 2017)
- MH normal office BP, high out-of-office BP (may have sig TOD ie. LVH)
  - Prevalence up to 20% of untreated adults (Ogedegbe et al, Curr Hypertens Rep, 2010)
- 24-hour ambulatory BP monitoring (ABPM) is recommended over HBPM for <u>diagnosis</u> but HBPM can be used if ABPM not tolerated or available, patient preference

# BP <u>MONITORING</u> IN HYPERTENSIVE PATIENTS



- Hypertension Canada currently recommends AOBP for BP monitoring in known hypertensives on treatment, except for patients with white coat HTN (then HBPM, ABPM is recommended)
- However  $\rightarrow$  evidence mounting for utility of HBPM in monitoring
- Many GPs/specialists do rely on HBPM for monitoring esp. during pandemic times!
  - Tec4Home BP study team (K. Tran et al.; in progress) surveyed Vancouver specialists during pandemic – 42% report increase in HBP M for monitoring, 31% less BP measurement, 12% not measuring BP!
    - Vast majority of hypertension visits reported in this survey were conducted either by phone or video (AOBP not performed!)

#### ADVANTAGES OF HBPM

- ► HBPM improves adherence to antihypertensive therapy (Pickering et al Hypertension 2008) → encourages patients' active involvement in their own care
- HBPM more practical than 24-hour ABPM, preferred by patients (Nasothimiou et al J Human Hypertens 2014)
- HBPM leads to overall better BP control compared to OBPM...

#### Efficacy of self-monitored blood pressure, with or without telemonitoring, for titration of antihypertensive medication (TASMINH4): an unmasked randomised controlled trial www.thelancet.com Vol 391 March 10, 2018

Richard J McManus, Jonathan Mant, Marloes Franssen, Alecia Nickless, Claire Schwartz, James Hodgkinson, Peter Bradburn, Andrew Farmer, Sabrina Grant, Sheila M Greenfield, Carl Heneghan, Susan Jowett, Una Martin, Siobhan Milner, Mark Monahan, Sam Mort, Emma Ogburn, Rafael Perera-Salazar, Syed Ahmar Shah, Ly-Mee Yu, Lionel Tarassenko, F D Richard Hobbs, on behalf of the TASMINH4 investigators\*

- 1182 hypertensive participants, not controlled, in UK across 142 primary care clinics, enrolled in study to assess 3 BP monitoring strategies:
  - ► self-monitoring of BP
  - self-monitoring of BP with telemonitoring
    - Readings sent to automated service alerting pts to high/low/insufficient BPs
  - usual care (AOBP-guided Tx)
- After 1 year, BP lower in both self-monitoring groups compared to usual care group (self-monitoring groups also taking more meds)
- "Self-monitoring can be recommended for the ongoing management of HTN"

#### MEAN BP AT BASELINE, 6 MOS, 12 MOS – LOWER IN SELF-MONITORING GROUPS COMPARED TO USUAL CARE

|                                  | Baseline                                | 6 months            | 12 months           | 6-month adjusted mean<br>difference (95% CI, p value*)<br>vs usual care | 12-month adjusted mean<br>difference (95% CI, p value*)<br>vs usual care |  |  |  |
|----------------------------------|-----------------------------------------|---------------------|---------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------|--|--|--|
| Systolic blood pressure (mm Hg)  |                                         |                     |                     |                                                                         |                                                                          |  |  |  |
| Telemonitoring group             | 153·2 (14·3); n=389                     | 139·0 (16·8); n=338 | 136·0 (16·1); n=327 | -3·7 (-5·9 to -1·5), p=0·0012                                           | –4·7 (–7·0 to –2·4), p<0·0001                                            |  |  |  |
| Self-monitoring group            | 152·9 (13·6); n=391                     | 140·4 (15·7); n=349 | 137·0 (16·7); n=328 | –2·1 (–4·3 to 0·1), p=0·0584                                            | –3·5 (–5·8 to –1·2), p=0·0029                                            |  |  |  |
| Usual care group                 | 153·1 (14·0); n=393                     | 142·5 (15·4); n=358 | 140·4 (16·5); n=348 |                                                                         |                                                                          |  |  |  |
| Diastolic blood pressure (mm Hg) |                                         |                     |                     |                                                                         |                                                                          |  |  |  |
| Telemonitoring group             | 85·5 (10·0); n=389                      | 79∙8 (9∙9); n=338   | 78·7 (9·7); n=328   | -1·2 (-2·4 to -0·01), p=0·0482                                          | –1·3 (–2·5 to –0·02), p=0·0482                                           |  |  |  |
| Self-monitoring group            | 85·1 (10·5); n=391                      | 80·3 (10·7); n=349  | 77·8 (10·1); n=328  | –0·1 (–1·3 to 1·07), p=0·8421                                           | –1·5 (–2·7 to –0·2), p=0·0209                                            |  |  |  |
| Usual care group                 | 86·0 (10·3); n=393                      | 81·1 (10·9); n=358  | 79·9 (10·7); n=348  | ••                                                                      |                                                                          |  |  |  |
| 5 1                              | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                     |                     |                                                                         |                                                                          |  |  |  |

Data are mean (SD), unless otherwise stated. \*Significant at p<0.017.

Table 2: Mean blood pressure at baseline, 6 months, and 12 months for each group

#### Home Blood Pressure Monitoring Alone vs. Combined Clinic and Ambulatory Measurements in Following Treatment-Induced Changes in Blood Pressure and Organ Damage

George S. Stergiou,<sup>1</sup> Nikos Karpettas,<sup>1</sup> Antonis Destounis<sup>1</sup>, Dimitris Tzamouranis,<sup>1</sup> Efthimia Nasothimiou,<sup>1</sup> Anastasios Kollias,<sup>1</sup> Leonidas Roussias,<sup>1</sup> and Ioannis Moyssakis<sup>2</sup>

- 2014 study devised to determine whether HBPM is as reliable as combined AOBP/ABPM in monitoring drug treatment and preclinical target organ damage
- 145 untreated subjects with elevated BP randomized to treatment initiation and titration of antihypertensives based on either a combination of AOBP/ABPM or HBPM alone
- Average follow up 13 months
- No sig. difference among either group in treatment-induced change in LV mass index on echo (primary outcome), pulse wave velocity, urinary albumin excretion or BP control rates



At end of follow up:

Sig. BP lowering seen with all 3 measurement methods (home, clinic, ambulatory) No sig. difference in **BP** lowering between HBP/M and AOBP/ABP measurement groups

**Figure 2.** Blood pressure changes during the study assessed using the 3 measurement methods in the 2 study arms (*P* < 0.001 for all changes, nonsignificant differences between arms; error bars for standard error).

## PROPER HBPM TECHNIQUE



Recommended by Recommandé par Hypertension Canada Gold | Or

- Use Hypertension Canada validated device
- Use arm with highest BP if >10mmHg difference, otherwise nondominant arm
- Should be seated with arm at heart level, resting for 5 mins, with back and feet supported
- Take measurements before breakfast and 2 hours after dinner, before meds
- Discard first reading, average of second 2 readings, morning and evening for 7 days (1-2 min intervals between BP readings)
- Record BP measurements to smart phone app or written in an organized way!

### CORRECT BP MEASUREMENT TECHNIQUE

#### BLOOD PRESSURE MEASUREMENT TECHNIQUE

Accurate diagnosis begins with accurate measurement:



#### Hypertension: What You Need to Know



Knowledge is power! Get the facts on hypertension – what causes it, how it's treated, what your numbers mean, and much more.

#### LEARN MORE ABOUT HYPERTENSION

hypertension.ca/hypertension-and-you

#### SAMPLE HOME BP LOG – DOWNLOADABLE FROM HYPERTENSION CANADA WEBSITE



Every year, with your health care professional, review the technique for measuring your blood pressure properly, and check that your device is in good condition.

#### My target blood pressure at home is less than:



| Date    |                   | Time      | Comments       | Heart Rate<br>(beats/min) | BP Reading #1 |           | BP Reading #2 |           |
|---------|-------------------|-----------|----------------|---------------------------|---------------|-----------|---------------|-----------|
|         |                   |           |                |                           | Systolic      | Diastolic | Systolic      | Diastolic |
| June 15 | Sample<br>Morning | 8:00 a.m. | Meds at 9 a.m. |                           | 138           | 82        | 135           | 80        |
|         | Sample<br>Evening | 8:00 p.m. | Upset          |                           | 157           | 92        | 154           | 90        |
|         | Day 1 Morning     |           |                |                           |               |           |               |           |
|         | Day 1 Evening     |           |                |                           |               |           |               |           |
|         |                   |           |                |                           |               |           |               |           |

#### WHEN IN CLINIC: UNATTENDED AUTOMATED OFFICE BP (AOBP) MEASUREMENT IS PREFERRED OVER MANUAL MEASUREMENT

- More closely approximates ABPM than manual office BPs (mitigates white coat effect)<sup>1-3</sup>
  - Systolic AOBP may be >10mmHg lower than manual (Rinfret et al Can J Cardio 2017)
- Is more predictive of end organ damage than manual office BPs (LV mass index, proteinuria and carotid intima-media thickness)<sup>4-6</sup>



Beckett L, et al. BMC Cardiovasc Disord 2005;5:18;
 Myers MG, et al. J Hypertens 2009;27:280-6;
 Myers MG, et al. BMJ 2011;342;d286;
 Campbell NRC, et al. J Hum Hypertens 2007;21:588-90;
 Andreadis EA, et al. Am J Hypertens 2011;24:661-6;
 Andreadis EA, et al. Am J Hypertens 2012;25:969-73.

#### AOBP MEASUREMENT TECHNIQUE

- BP should be taken in both arms at least once, higher arm used for AOBP thereafter
- Use HC validated automated device
- Choose cuff with appropriate bladder size width 40% of arm circumference, length 80-100% of arm circumference
- Should be unattended in quiet room, feet on floor, back supported, no specified period of rest prior to measurements
- 3-6 measurements should be taken with 1-2 minute intervals between each measurement

# IMPORTANT NOTE ON BP MEASUREMENT IN ACHIEVING INTENSIVE BP TARGETS (SBP <120)

#### **BP Measurement in SPRINT: Automated Office BP (AOBP)**

- Visit BP was the average of 3 seated office BP measurements obtained using an automated measurement device: Omron 907XL.
- Appropriate cuff size was determined by arm circumference.
- Participant was seated with back supported and arm bared and supported at heart level.
- Device was set to delay 5 minutes to begin 3 BP measurements research staff was trained to push start button and leave exam room during the 5 minute delay and measurements, during which time participant refrained from talking.
- BP was also measured 1 min after standing at screening, baseline, 1, 6, and 12 months, and annually thereafter. While standing, participants were asked about symptoms of hypotension.

#### WHICH DEVICE FOR HOME OR OFFICE?? HYPERTENSION CANADA RECOMMENDED BP DEVICE PROGRAM

- HC program allows you to confidently buy devices that are validated in studies
- Includes office, home, and ambulatory BP monitors in the list

#### What type of blood pressure monitor should I buy?

The blood pressure monitor you purchase should be proven accurate, and the monitor's cuff must properly fit your upper arm. Your health care professional can recommend a monitor and measure your arm to select the right cuff size. You should bring your monitor to your health care professional annually to have it checked for accuracy.

To help you in your purchasing decisions, Hypertension Canada provides a list of recommended monitors which have been proven accurate in research studies at **hypertension.ca**. Many of these recommended devices will carry the symbols shown to the right on their packaging.



Recommended by Recommandé par Hypertension Canada Gold | Or



Recommended by Recommandé par **Hypertension Canada** Silver | Argent

#### hypertension.ca/bpdevices

The Hypertension Canada blood pressure device recommendation listing: Empowering use of clinically validated devices in Canada

Raj Padwal MD<sup>1</sup> Angelique Berg<sup>2</sup> | Mark Gelfer MD<sup>3</sup> | Karen Tran MD<sup>4</sup> | Jennifer Ringrose MD<sup>1</sup> | Marcel Ruzicka MD<sup>5</sup> | Swapnil Hiremath MD<sup>5</sup> | for the Accuracy in Measurement of Blood Pressure (AIM-BP) Collaborative

- ► Accuracy in Measurement of Blood Pressure Collaborative (AIM-BP) → this group created HC recommended BP device listing
- Created to evaluate and ensure optimal blood pressure measurement and access to validated devices across Canada
  - Previous skepticism about automated devices due to number of low-quality, inaccurate devices being sold
  - Fewer than 15% of devices sold internationally are validated!
- Specific to Canada reflects our device market and ensures manufacturers continually re-validate machines

### TAKE HOME MESSAGES



Out-of-office measurements recommended for <u>diagnosing</u> HTN

- Home BP measurement becoming more prevalent, evidence is mounting, for their use in BP diagnosis AND monitoring
- Ensure proper technique for home and office BP measurement
- Use a validated device Look for the Hypertension Canada Recommendation logo



Recommended by Recommandé par Hypertension Canada Gold | Or



Recommended by Recommandé par Hypertension Canada Silver | Argent
# Role of 24-hour ambulatory blood pressure monitoring in diagnosis and management of hypertension

Marcel Ruzicka, MD, PhD, FRCPC

Division of Nephrology, University of Ottawa

# **Objectives**

Review utilization of 24-hour ABPM for diagnosis and management of HTN in Canada

Relevance of 24-hour ABPM for diagnosis and management of White-coat HTN and Masked HTN

Relevance of 24-hour ABPM for diagnosis of abnormal nocturnal patterns of BP

Review 24-hour ABPM BP targets for diagnosis and management of HTN

# How do family physicians measure BP in clinical practice?

| <b>BP</b> measurement Method      | Diagnosis | Follow-up |   |
|-----------------------------------|-----------|-----------|---|
| Manual (mercury/aneroid)          | 21.4%     | 63.6%     |   |
| Automated Oscillometric<br>Device | 29.7%     | 59.1%     |   |
| Pharmacy BP                       | 2.3%      | 36.2%     |   |
| 24-hr ABPM                        | 14.4%     | 23.0%     | > |
| Home BP monitoring                | 22.4%     | 68.7%     |   |

Kaczorowski et al. Can Fam Physcian 2017;63:193-199

# Major disadvantages of office BP assessment

BP is taken under circumstances that may adversely affect the level of BP (overestimate - white-coat effect or underestimate – masked HTN) true BP.

It provides only a snapshot of BP (which could be misleading for management in patients with labile HTN).

It does not provide any information about nocturnal BP.

# **Advantages of 24-hour ABPM**

24-hour ABPM simply gives more measurements (typically every 15-20 minutes during daytime and every 30 minutes during sleep) than conventional BP measurement, and provides information about BP variability.

# **Advantages of 24-hour ABPM**

24-hour ABPM provides a profile of BP away from the medical environment, thereby allowing identification of individuals with a white-coat response or masked hypertension.

### White Coat HTN/White Coat Effect

#### White-coat hypertension

**definition** – patients naive to hypertension therapy, office BP above 140/90 mmHg (by NAOBP device) or 135/85 mmHg (by AOBP device), whereas awake average BP by 24-hour ABPM is <135/85 mmHg

#### White-coat effect

**definition** – in patients with confirmed sustained HTN, office BP readings higher (by at least 10 mmHg) compared to BP readings outside office 58 y old male

**Ref: Difficult to control HTN/Secondary HTN?** 

Hx of HTN 2 years

No Hx of IHD/Stroke/DM/CKD

Meds Amlodipine 10 mg/day, Perindopril 4 mg/day, Bisoprolol 5 mg/day,

HCTZ 25 mg/day

Non smoker/Not excessive alcohol intake/Treadmill 4x/wk

BMI 22

| Of | fice BPs | casual | resting | standing |
|----|----------|--------|---------|----------|
| 1. | Visit    | 175/88 | 156/77  | 169/87   |
| 2. | Visit    | 167/86 | 157/82  | 164/81   |

Labs: Scr 78/ACR N/ECG N

Home BP readings 115-140/65-85

### **24-hour ABPM**



Dg: White coat effect. Normal BP during the day and sleep. Dipper.

# White-coat HTN/White Coat Effect Clinical Relevance

These two patterns are highly prevalent (20-40%), in particular in elderly and very elderly patients.

# White-coat HTN/White Coat Effect Clinical Relevance

**Diagnostic method** – 24-hour ABPM and self home BP monitoring.

These two patterns, white-coat HTN and white-coat effect clearly represent situation where treatment based solely on office BP reading will lead to "unnecessary" drug therapy or to overtreatment.

### White-coat HTN - Prognosis

Patients with white-coat hypertension do require close follow-up (preferably with 24-hour ABPM or home BP monitoring) as they have higher risk of developing hypertension in the future and higher risk of adverse cardiovascular events.

(Huang et al. J Hypertens 2017;35:677-688)

### Masked HTN/Masked Uncontrolled HTN

### **Masked Hypertension/Masked Uncontrolled HTN**

**Other terms used:** reversed white coat hypertension, white coat normotension, work-related hypertension.

**Definition of Masked HTN** - patients naive to BP lowering therapy classified as normotensive by office BP measurements that are hypertensive by 24-hour ABPM (awake period or during sleep).

**Definition of Masked Uncontrolled HTN** – treated patients with sustained HTN with controlled office BP, but awake and/or sleep average BP on 24-hour ABPM >135/85 and > 120/70 mmHg, respectively. 48 y old male

**Ref: HTN and MAU** 

Hx of HTN 10 years

No Hx of IHD/Stroke/

DM type 2 x 5 years/N Scr/ACR 55

Meds HCTZ 25 mg/day, Trandolapril 4 mg/day, Amlodipine 10 mg/day

Ex-smoker/No alcohol/Golf summer/Skiing winter

BMI 26

| Offi | ice BPs | casual | resting | standing |
|------|---------|--------|---------|----------|
| 1.   | Visit   | 155/79 | 131/77  | 150/87   |

Labs: Scr 90/ACR 47.4/Echocardiogram LVH

Home BP readings 140-155/80-90

### **24-Hour ABPM**



Dg: Systolic and Diastolic HTN during day. Normal BP during sleep. Extreme Dipper. Recommendation: Masked HTN. Titrate BP therapy to target BP.

## **Masked Hypertension**

**Prevalence** is high (20-40% among hypertensive patients) *Franklin et al. Hypertension 2015;65:16-20*.

**Diagnostic method** – 24-hour ABPM and to limited extent self home BP monitoring (does not provide information on nocturnal BP).

#### **PROGNOSIS OF MASKED HYPERTENSION**

1332 subjects in Japan, 24-hr ABPM and office BP, cardiovascular mortality and cerebrovascular morbidity over 10 year F/U



# Major disadvantages of office BP assessment

BP is taken under circumstances that may adversely affect the level of BP (overestimate - white-coat effect or underestimate – masked HTN, true BP).

It provides only a snapshot of BP (which could be misleading for management in patients with labile HTN).

It does not provide any information about nocturnal BP.

# **Advantages of ABPM**

24-hour ABPM can demonstrate a number of patterns of BP behaviour that are relevant to clinical practice, such as nocturnal hypertension and nocturnal BP dipping, non dipping, reverse-dipping, extreme dipping.

# **Abnormal patterns of nocturnal BP**

**Nocturnal hypertension** 

Non-dipping

**Reverse dipping** 

**Extreme dipping** 

Morning BP surge

#### **DIURNAL RHYTHM OF BLOOD PRESSURE** (normotensive patient with normal nocturnal BP and dipping pattern)



time of the day (hours)

### Patterns of BP related to nocturnal window

**Nocturnal hypertension** 

**definition** – blood pressure during sleep > 120/70 mmHg

**prognosis** – strongest predictor of adverse cardiovascular outcomes

(Hansen et al. Hypertension 2011;57:3-10). (Salles et al. Hypertension 2016;67:693-700).

### 24-hr ABPM

#### (systolic daytime HTN, nocturnal systolic HTN, dipper)



time of the day (hours)

### Patterns of BP related to nocturnal window

**Non-dipping** 

definition – absence of decrease in nighttime BP by 10%
or more
prognosis – higher risk (compared to dippers) of adverse
cardiovascular events 1.40 (95% CI 1.227-1.597)

(Salles et al. Hypertension 2016;67:693-700).

#### 24- hour ABPM

#### (normal daytime BP, nocturnal systolic HTN, non-dipper)



time of the day (hours)

### Patterns of BP related to nocturnal window

**Reverse dipping** 

**definition** - BP rises above daytime pressures rather than falling during the night

**prognosis** – increased risk of stroke and cardiac events 1.785 (95% CI 1.47-2.15)

(Salles et al. Hypertension 2016;67:693-700).

#### **DIURNAL RHYTHM OF BLOOD PRESSURE** (normal daytime BP, nocturnal HTN, reverse dipper)



time of the day (hours)

### Patterns of BP related to nocturnal window

**Extreme dipping and Morning surge in BP** 

**definition** - a marked nocturnal fall in BP (> 20%)

Extreme dipping is closely associated with an excessive (>55 mmHg for SBP) **morning surge in BP** 

#### **Extreme Dipper (>50 mmHg) and Morning SBP Surge (>60 mmHg).**



Dg: Systolic and Diastolic HTN during day. Normal BP during sleep. Extreme Dipper with Excessive Morning Surge.

### Patterns of BP related to nocturnal window

#### **Extreme dipping and Morning surge in BP**

**prognosis** - patients with atherosclerotic disease are at risk of nonfatal ischaemic stroke and myocardial ischemia, an excessive (>55 mmHg) morning surge in SBP is associated with an increase in risk for stroke and acute coronary event 1.203 (95% CI 0.821-1.763)

(Salles et al. Hypertension 2016;67:693-700).

# **Advantages of ABPM**

24-hour ABPM is a much stronger predictor of CV morbidity and mortality than conventional measurement, and evidence is growing that nocturnal BP measured by ABPM may be the most sensitive predictor of CV outcome, from which it follows that the measurement of night-time BP should be an important part of clinical practice.

#### BP targets for general population and high risk patients in Canada

|              | General Population | High risk patients<br>(eg. patients with CKD) |
|--------------|--------------------|-----------------------------------------------|
| Office BP    | <135/85 mmHg       | <120/85 mmHg                                  |
| 24-hour ABPM |                    |                                               |
| Daytime      | <135/85 mmHg       | ?                                             |
| Nocturnal    | <120/70 mmHg       | ?                                             |

#### **SPRINT** ambulatory blood pressure study

897 patients, 27 months f/u, 24-hour ABPM done within 3 weeks of office BP, intensive (<120 mmHg) vs standard (<140 mmHg)

| BP                                   | <b>BP lowering to &lt;120 mmHg</b> | Standard BP lowering               |
|--------------------------------------|------------------------------------|------------------------------------|
| Office BP                            | 119.7±12.8 mmHg                    | 135.5±13.8 mmHg                    |
| 24-hour ABPM<br>Daytime<br>Nocturnal | 126.5±12.3 mmHg<br>115.7±14.6 mmHg | 138.8±12.6 mmHg<br>125.5±14.6 mmHg |

Drawz et al. Hypertension 2017;69:42-50.

### Conclusion

Given the limitations of office blood pressure assessment,

24-hour ABPM should be more utilized for diagnosis and

treatment of HTN (in agreement with the Canadian

Guidelines for Diagnosis and Management of Hypertension

and guidelines by other national professional organizations).


## THANK YOU!



## **Evaluation and Certificate**

- You will receive an email directly from the CSN Admin office following this presentation to complete an electronic evaluation.
  - Your feedback helps shape future educational initiatives! Completion of the evaluation is appreciated!
- You will then be emailed your Certificate of Participation.



